36 research outputs found

    One-variable word equations in linear time

    Full text link
    In this paper we consider word equations with one variable (and arbitrary many appearances of it). A recent technique of recompression, which is applicable to general word equations, is shown to be suitable also in this case. While in general case it is non-deterministic, it determinises in case of one variable and the obtained running time is O(n + #_X log n), where #_X is the number of appearances of the variable in the equation. This matches the previously-best algorithm due to D\k{a}browski and Plandowski. Then, using a couple of heuristics as well as more detailed time analysis the running time is lowered to O(n) in RAM model. Unfortunately no new properties of solutions are shown.Comment: submitted to a journal, general overhaul over the previous versio

    What's Decidable About Sequences?

    Full text link
    We present a first-order theory of sequences with integer elements, Presburger arithmetic, and regular constraints, which can model significant properties of data structures such as arrays and lists. We give a decision procedure for the quantifier-free fragment, based on an encoding into the first-order theory of concatenation; the procedure has PSPACE complexity. The quantifier-free fragment of the theory of sequences can express properties such as sortedness and injectivity, as well as Boolean combinations of periodic and arithmetic facts relating the elements of the sequence and their positions (e.g., "for all even i's, the element at position i has value i+3 or 2i"). The resulting expressive power is orthogonal to that of the most expressive decidable logics for arrays. Some examples demonstrate that the fragment is also suitable to reason about sequence-manipulating programs within the standard framework of axiomatic semantics.Comment: Fixed a few lapses in the Mergesort exampl

    Picture-Hanging Puzzles

    Full text link
    We show how to hang a picture by wrapping rope around n nails, making a polynomial number of twists, such that the picture falls whenever any k out of the n nails get removed, and the picture remains hanging when fewer than k nails get removed. This construction makes for some fun mathematical magic performances. More generally, we characterize the possible Boolean functions characterizing when the picture falls in terms of which nails get removed as all monotone Boolean functions. This construction requires an exponential number of twists in the worst case, but exponential complexity is almost always necessary for general functions.Comment: 18 pages, 8 figures, 11 puzzles. Journal version of FUN 2012 pape

    Well-nested Context Unification

    Get PDF
    International audienceContext unification (CU) is the famous open problem of solving context equations for trees. We distinguish a new decidable fragment of CU - well-nested CU - and present a new unification algorithm that solves well-nested context equations in non-deterministic polynomial time. We show that minimal well-nested solutions of context equations can be composed from the material present in the equation. This surprising property is highly wishful when modeling natural language ellipsis in CU

    Periodicity Forcing Words

    Get PDF
    The Dual Post Correspondence Problem asks, for a given word α, if there exists a non-periodic morphism g and an arbitrary morphism h such that g(α) = h(α). Thus α satisfies the Dual PCP if and only if it belongs to a non-trivial equality set. Words which do not satisfy the Dual PCP are called periodicity forcing, and are important to the study of word equations, equality sets and ambiguity of morphisms. In this paper, a 'prime' subset of periodicity forcing words is presented. It is shown that when combined with a particular type of morphism it generates exactly the full set of periodicity forcing words. Furthermore, it is shown that there exist examples of periodicity forcing words which contain any given factor/prefix/suffix. Finally, an alternative class of mechanisms for generating periodicity forcing words is developed, resulting in a class of examples which contrast those known already

    Coding in the existential theory of concatenation

    No full text

    Word equations over graph products

    No full text
    For monoids that satisfy a weak cancellation condition, it is shown that the decidability of the existential theory of word equations is preserved under graph products. Furthermore, it is shown that the positive theory of a graph product of groups can be reduced to the positive theories of those factors, which commute with all other factors, and the existential theories of the remaining factors. Both results also include suitable constraints for the variables. Larger classes of constraints lead in many cases to undecidability results

    Word Equation Systems: The Heuristic Approach

    No full text
    corecore